10 research outputs found

    Finite Element Analysis of Custom Shoulder Implants Provides Accurate Prediction of Initial Stability

    Get PDF
    Custom reverse shoulder implants represent a valuable solution for patients with large bone defects. Since each implant has unique patient-specific features, finite element (FE) analysis has the potential to guide the design process by virtually comparing the stability of multiple configurations without the need of a mechanical test. The aim of this study was to develop an automated virtual bench test to evaluate the initial stability of custom shoulder implants during the design phase, by simulating a fixation experiment as defined by ASTM F2028-14. Three-dimensional (3D) FE models were generated to simulate the stability test and the predictions were compared to experimental measurements. Good agreement was found between the baseplate displacement measured experimentally and determined from the FE analysis (Spearman’s rank test, p < 0.05, correlation coefficient ¿s = 0.81). Interface micromotion analysis predicted good initial fixation (micromotion <150 µm, commonly used as bone ingrowth threshold). In conclusion, the finite element model presented in this study was able to replicate the mechanical condition of a standard test for a custom shoulder implants

    Computer Aided Tools for the Design and Planning of Personalized Shoulder Arthroplasty

    Get PDF
    La artroplastia de hombro es el tercer procedimiento de reemplazo articular más común, después de la artroplastia de rodilla y cadera, y actualmentees el de más rápido crecimiento en el campo ortopédico. Las principales opciones quirúrgicas incluyen la artroplastia total de hombro (TSA), en la quese restaura la anatomía articular normal, y, para pacientes con un manguito rotador completamente desgarrado, la artroplastia inversa de hombro (RSA), en la que la bola y la cavidad de la articulación glenohumeral se cambian. A pesar del progreso reciente y los avances en el diseño, las tasas de complicaciones reportadas para RSA son más altas que las de la artroplastia de hombro convencional. Un enfoque específico para el paciente, en el que los médicos adaptan el tratamiento quirúrgico a las características del mismo y al estado preoperatorio, por ejemplo mediante implantes personalizados y planificación previa, puede ayudar a reducir los problemas postoperatorios y mejorar el resultado funcional. El objetivo principal de esta tesis es desarrollar y evaluar métodos novedosos para RSA personalizado, utilizando tecnologías asistidas por ordenador de última generación para estandarizar y automatizar las fases de diseño y planificación.Los implantes personalizados son una solución adecuada para el tratamiento de pacientes con pérdida extensa de hueso glenoideo. Sin embargo, los ingenieros clínicos se enfrentan a muchas variables en el diseño de implantes (número y tipo de tornillos, superficie de contacto, etc.) y una gran variabilidad anatómica y patológica. Actualmente, no existen herramientas objetivas para guiarlos a la hora de elegir el diseño óptimo, es decir, con suficiente estabilidad inicial del implante, lo que hace que el proceso de diseño sea tedioso, lento y dependiente del usuario. En esta tesis, se desarrolló una simulación de Virtual Bench Test (VBT) utilizando un modelo de elementos finitos para evaluar automáticamente la estabilidad inicial de los implantes de hombro personalizados. A través de un experimento de validación, se demostró que los ingenieros clínicos pueden utilizar el resultado de Virtual Bench Test como referencia para respaldar sus decisiones y adaptaciones durante el proceso de diseño del implante.Al diseñar implantes de hombro, el conocimiento de la morfología y la calidad ósea de la escápula en toda la población es fundamental. En particular, se tienen en cuenta las regiones con la mejor reserva ósea (hueso cortical) para definir la posición y orientación de los orificios de los tornillos, mientras se busca una fijación óptima. Como alternativa a las mediciones manuales, cuya generalización está limitada por el análisis de pequeños subconjuntos de pacientes potenciales, Statistical Shape Models (SSMs) se han utilizado comúnmente para describir la variabilidad de la forma dentro de una población. Sin embargo, estos SSMs normalmente no contienen información sobre el grosor cortical.Por lo tanto, se desarrolló una metodología para combinar la forma del hueso escapular y la morfología de la cortical en un SSM. Primero, se presentó y evaluó un método para estimar el espesor cortical, a partir de un análisis de perfil de Hounsfield Unit (HU). Luego, utilizando 32 escápulas sanas segmentadas manualmente, se creó y evaluó un modelo de forma estadística que incluía información de la cortical. La herramienta desarrollada se puede utilizar para implantar virtualmente un nuevo diseño y probar su congruencia dentro de una población virtual generada, reduciendo así el número de iteraciones de diseño y experimentos con cadáveres.Las mediciones del alargamiento de los músculos deltoides y del manguito rotador durante la planificación quirúrgica pueden ayudar a los médicos aseleccionar un diseño y una posición de implante adecuados. Sin embargo, tal evaluación requiere la indicación de puntos anatómicos como referencia para los puntos de unión de los músculos, un proceso que requiere mucho tiempo y depende del usuario, ya que a menudo se realiza manualmente. Además, las imágenes médicas, que se utilizan normalmente para la artroplastia de hombro,contienen en su mayoría solo el húmero proximal, lo que hace imposible indicarlos puntos de unión de los músculos que se encuentran fuera del campo de visión de la exploración. Por lo tanto, se desarrolló y evaluó un método totalmente automatizado, basado en SSM, para medir la elongación del deltoides y del manguito rotador. Su aplicabilidad clínica se demostró mediante la evaluación del rendimiento de la estimación automatizada de la elongación muscular para un conjunto de articulaciones artríticas del hombro utilizadas para la planificación preoperatoria de RSA, lo que confirma que es una herramienta adecuada para los cirujanos a la hora de evaluar y refinar las decisiones clínicas.En esta investigación, se dio un paso importante en la dirección de un enfoque más personalizado de la artroplastia inversa de hombro, en el que el manejo quirúrgico, es decir, el diseño y la posición del implante, se adapta a las características específicas del paciente y al estado preoperatorio. Al aplicar tecnologías asistidas por computadora en la práctica clínica, el proceso de diseño y planificación se puede automatizar y estandarizar, reduciendo así los costos y los plazos de entrega. Además, gracias a los métodos novedosos presentados en esta tesis, esperamos en el futuro una adopción más amplia del enfoque personalizado, con importantes beneficios tanto para los cirujanos como para los pacientes.Shoulder arthroplasty is the third most common joint replacement procedure, after knee and hip arthroplasty, and currently the most rapidly growing one in the orthopaedic field. The main surgical options include total shoulder arthroplasty (TSA), in which the normal joint anatomy is restored, and, for patients with a completely torn rotator cuff, reverse shoulder arthroplasty (RSA), in which the ball and the socket of the glenohumeral joint are switched. Despite the recent progress and advancement in design, the reported rates of complication for RSA are higher than those of conventional shoulder arthroplasty. A patient-specific approach, in which clinicians adapt the surgical management to patient characteristics and preoperative condition, e.g. through custom implants and pre-planning, can help to reduce postoperative problems and improve the functional outcome. The main goal of this thesis is to develop and evaluate novel methods for personalized RSA, using state-of-the-art computer aided technologies to standardize and automate the design and planning phases. Custom implants are a suitable solution when treating patients with extensive glenoid bone loss. However, clinical engineers are confronted with an enormous implant design space (number and type of screws, contact surface, etc.) and large anatomical and pathological variability. Currently, no objective tools exist to guide them when choosing the optimal design, i.e. with sufficient initial implant stability, thus making the design process tedious, time-consuming, and user-dependent. In this thesis, a Virtual Bench Test (VBT) simulation was developed using a finite element model to automatically evaluate the initial stability of custom shoulder implants. Through a validation experiment, it was shown that the virtual test bench output can be used by clinical engineers as a reference to support their decisions and adaptations during the implant design process. When designing shoulder implants, knowledge about bone morphology and bone quality of the scapula throughout a certain population is fundamental. In particular, regions with the best bone stock (cortical bone) are taken into account to define the position and orientation of the screw holes, while aiming for an optimal fixation. As an alternative to manual measurements, whose generalization is limited by the analysis of small sub-sets of the potential patients, Statistical Shape Models (SSMs) have been commonly used to describe shape variability within a population. However, these SSMs typically do not contain information about cortical thickness. Therefore, a methodology to combine scapular bone shape and cortex morphology in an SSM was developed. First, a method to estimate cortical thickness, starting from a profile analysis of Hounsfield Unit (HU), was presented and evaluated. Then, using 32 manually segmented healthy scapulae, a statistical shape model including cortical information was created and assessed. The developed tool can be used to virtually implant a new design and test its congruency inside a generated virtual population, thus reducing the number of design iterations and cadaver labs. Measurements of deltoid and rotator cuff muscle elongation during surgical planning can help clinicians to select a suitable implant design and position. However, such an assessment requires the indication of anatomical landmarks as a reference for the muscle attachment points, a process that is time-consuming and user-dependent, since often performed manually. Additionally, the medical images, which are normally used for shoulder arthroplasty, mostly contain only the proximal humerus, making it impossible to indicate those muscle attachment points which lie outside of the field of view of the scan. Therefore, a fully-automated method, based on SSM, for measuring deltoid and rotator cuff elongation was developed and evaluated. Its clinical applicability was demonstrated by assessing the performance of the automated muscle elongation estimation for a set of arthritic shoulder joints used for preoperative planning of RSA, thus confirming it a suitable tool for surgeons when evaluating and refining clinical decisions. In this research, a major step was taken into the direction of a more personalized approach to Reverse Shoulder Arthroplasty, in which the surgical management, i.e. implant design and position, is adapted to the patient-specific characteristics and preoperative condition. By applying computer aided technologies in the clinical practice, design and planning process can be automated and standardized, thus reducing costs and lead times. Additionally, thanks to the novel methods presented in this thesis, we expect in the future a wider adoption of the personalized approach, with important benefits both for surgeons and patients.<br /

    Integration of cortical thickness data in a statistical shape model of the scapula

    Get PDF
    Knowledge about bone morphology and bone quality of the scapula throughout the population is fundamental in the design of shoulder implants. In particular, regions with the best bone stock (cortical bone) are taken into account when planning the supporting screws, aiming for an optimal fixation. As an alternative to manual measurements, statistical shape models (SSMs) have been commonly used to describe shape variability within a population. However, explicitly including cortical thickness information in an SSM of the scapula still remains a challenge. Therefore, the goal of this study is to combine scapular bone shape and cortex morphology in an SSM. First, a method to estimate cortical thickness, based on HU (Hounsfield Unit) profile analysis, was developed and validated. Then, based on the manual segmentations of 32 healthy scapulae, a statistical shape model including cortical information was created and evaluated. Generalization, specificity and compactness were calculated in order to assess the quality of the SSM. The average cortical thickness of the SSM was 2.0¿±¿0.63¿mm. Generalization, specificity and compactness performances confirmed that the combined SSM was able to capture the bone quality changes in the population. In this work we integrated information on the cortical thickness in an SSM for the scapula. From the results we conclude that this methodology is a valuable tool for automatically generating a large population of scapulae and deducing statistics on the cortex. Hence, this SSM can be useful to automate implant design and screw placement in shoulder arthroplasty

    Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity

    Get PDF
    It is well founded that the mechanical environment may regulate bone regeneration in orthopedic applications. The purpose of this study is to investigate the mechanical contributions of the scaffold and the host to bone regeneration, in terms of subject specificity, implantation site and sensitivity to the mechanical environment. Using a computational approach to model mechano-driven regeneration, bone ingrowth in porous titanium scaffolds was simulated in the distal femur and proximal tibia of three goats and compared to experimental results. The results showed that bone ingrowth shifted from a homogeneous distribution pattern, when scaffolds were in contact with trabecular bone (max local ingrowth 12.47%), to a localized bone ingrowth when scaffolds were implanted in a diaphyseal location (max local ingrowth 20.64%). The bone formation dynamics revealed an apposition rate of 0.37±0.28%/day in the first three weeks after implantation, followed by limited increase in bone ingrowth until the end of the experiment (12 weeks). According to in vivo data, we identified one animal whose sensitivity to mechanical stimulation was higher than the other two. Moreover, we found that the stimulus initiating bone formation was consistently higher in the femur than in the tibia for all the individuals. Overall, the dependence of the osteogenic response on the host biomechanics means that, from a mechanical perspective, the regenerative potential depends on both the scaffold and the host environment. Therefore, this work provides insights on how the mechanical conditions of both the recipient and the scaffold contribute to meet patient and location-specific characteristics

    Quantitative assessment of bone quality after total hip replacement through medical images: 2D and 3D approaches

    Get PDF
    La valutazione della qualità dell’osso è un passo importante nel campo clinico, sia in condizioni patologiche che non patologiche. In particolare, in pazienti sottoposti ad intervento di sostituzione totale d’anca, la presenza della protesi altera le condizioni di stress fisiologiche del femore, causando un processo di adattamento dell’osso che può avere conseguenze sulla stabilità dell’impianto e sulle condizioni dell’osso. Perciò, è evidente l’importanza di monitorare la qualità dell’osso che circonda lo stelo, sia nel breve che nel lungo termine. A partire da rilevazioni densitometriche effettuate su immagini TC, questa tesi affronta due argomenti principali: 1) miglioramento del protocollo corrente per la valutazione della variazione di densità minerale ossea (tridimensionalmente attorno alla protesi) dopo un anno dall’operazione e applicazione ad un ampio dataset (11 pazienti) per esaminare le differenze tra soggetti; 2) studio di fattibilità su 8 pazienti di nuovi approcci 2D basati su sezioni standard del femore, con lo scopo di ottenere uno strumento per la valutazione della qualità dell’osso che possa essere affidabile per i clinici, ma anche minimamente invasivo per i pazienti, riducendo la dose di radiazione. I risultati dell’approccio 3D suggeriscono che può essere usato come strumento di monitoraggio post-operatorio del paziente. Inoltre la tesi mostra la fattibilità di nuovi approcci 2D, sebbene alcuni limiti devono essere superati prima di poterli utilizzare in ambito clinico

    Integrazione delle immagini ecotomografiche nei sistemi per chirurgia robotica: Stato dell'arte e sviluppi futuri

    Get PDF
    L'elaborato si propone di analizzare la fusione di due tecnologie diverse, ma allo stesso modo rivoluzionarie. Da un lato abbiamo la chirurgia robotica (Robotic Assisted Surgery), reputata ormai la nuova frontiera della chirurgia mini-invasiva, dall'altro invece l'eco-tomografia, che in molti ipotizzano poter divenire lo 'stetoscopio' del futuro

    Integration of cortical thickness data in a statistical shape model of the scapula

    No full text
    Knowledge about bone morphology and bone quality of the scapula throughout the population is fundamental in the design of shoulder implants. In particular, regions with the best bone stock (cortical bone) are taken into account when planning the supporting screws, aiming for an optimal fixation. As an alternative to manual measurements, statistical shape models (SSMs) have been commonly used to describe shape variability within a population. However, explicitly including cortical thickness information in an SSM of the scapula still remains a challenge. Therefore, the goal of this study is to combine scapular bone shape and cortex morphology in an SSM. First, a method to estimate cortical thickness, based on HU (Hounsfield Unit) profile analysis, was developed and validated. Then, based on the manual segmentations of 32 healthy scapulae, a statistical shape model including cortical information was created and evaluated. Generalization, specificity and compactness were calculated in order to assess the quality of the SSM. The average cortical thickness of the SSM was 2.0 ± 0.63 mm. Generalization, specificity and compactness performances confirmed that the combined SSM was able to capture the bone quality changes in the population. In this work we integrated information on the cortical thickness in an SSM for the scapula. From the results we conclude that this methodology is a valuable tool for automatically generating a large population of scapulae and deducing statistics on the cortex. Hence, this SSM can be useful to automate implant design and screw placement in shoulder arthroplasty.status: publishe

    Automated muscle elongation measurement during reverse shoulder arthroplasty planning.

    No full text
    BACKGROUND: Adequate deltoid and rotator cuff elongation in reverse shoulder arthroplasty is crucial to maximize postoperative functional outcomes and to avoid complications. Measurements of deltoid and rotator cuff elongation during preoperative planning can support surgeons in selecting a suitable implant design and position. Therefore, this study presented and evaluated a fully automated method for measuring deltoid and rotator cuff elongation. METHODS: Complete scapular and humeral models were extracted from computed tomography scans of 40 subjects. First, a statistical shape model of the complete humerus was created and evaluated to identify the muscle attachment points. Next, a muscle wrapping algorithm was developed to identify the muscle paths and to compute muscle lengths and elongations after reverse shoulder arthroplasty implantation. The accuracy of the muscle attachment points and the muscle elongation measurements was evaluated for the 40 subjects by use of both complete and artificially created partial humeral models. Additionally, the muscle elongation measurements were evaluated for a set of 50 arthritic shoulder joints. Finally, a sensitivity analysis was performed to evaluate the impact of implant positioning on deltoid and rotator cuff elongation. RESULTS: For the complete humeral models, all muscle attachment points were identified with a median error < 3.5 mm. For the partial humeral models, the errors on the deltoid attachment point largely increased. Furthermore, all muscle elongation measurements showed an error < 1 mm for 75% of the subjects for both the complete and partial humeral models. For the arthritic shoulder joints, the errors on the muscle elongation measurements were <2 mm for 75% of the subjects. Finally, the sensitivity analysis showed that muscle elongations were affected by implant positioning. DISCUSSION: This study presents an automated method for accurately measuring muscle elongations during preoperative planning of shoulder arthroplasty. The results show that the accuracy in measuring muscle elongations is higher than the accuracy in indicating the muscle attachment points. Hence, muscle elongation measurements are insensitive to the observed errors on the muscle attachment points. Related to this finding, muscle elongations can be accurately measured for both a complete humeral model and a partial humeral model. Because the presented method also showed accurate results for arthritic shoulder joints, it can be used during preoperative shoulder arthroplasty planning, in which typically only the proximal humerus is present in the scan and in which bone arthropathy can be present. As the muscle elongations are sensitive to implant positioning, surgeons can use the muscle elongation measurements to refine their surgical plan.status: Published onlin

    Automated muscle elongation measurement during reverse shoulder arthroplasty planning

    No full text
    Background: Adequate deltoid and rotator cuff elongation in reverse shoulder arthroplasty is crucial to maximize postoperative func- tional outcomes and to avoid complications. Measurements of deltoid and rotator cuff elongation during preoperative planning can sup- port surgeons in selecting a suitable implant design and position. Therefore, this study presented and evaluated a fully automated method for measuring deltoid and rotator cuff elongation. Methods: Complete scapular and humeral models were extracted from computed tomography scans of 40 subjects. First, a statistical shape model of the complete humerus was created and evaluated to identify the muscle attachment points. Next, a muscle wrapping algorithm was developed to identify the muscle paths and to compute muscle lengths and elongations after reverse shoulder arthroplasty implantation. The accuracy of the muscle attachment points and the muscle elongation measurements was evaluated for the 40 subjects by use of both complete and artificially created partial humeral models. Additionally, the muscle elongation measurements were evaluated for a set of 50 arthritic shoul- der joints. Finally, a sensitivity analysis was performed to evaluate the impact of implant positioning on deltoid and rotator cuff elongation. Results: Forthecompletehumeralmodels,allmuscleattachmentpointswereidentifiedwithamedianerror<3.5mm.Forthepartialhumeral models, the errors on the deltoid attachment point largely increased. Furthermore, all muscle elongation measurements showed an error < 1 mm for 75% of the subjects for both the complete and partial humeral models. For the arthritic shoulder joints, the errors on the muscle elongation mea- surements were <2 mm for 75% of the subjects. Finally, the sensitivity analysis showed that muscle elongations were affected by implant positioning. Discussion: This study presents an automated method for accurately measuring muscle elongations during preoperative planning of shoulder arthroplasty. The results show that the accuracy in measuring muscle elongations is higher than the accuracy in indicating the muscle attachment points. Hence, muscle elongation measurements are insensitive to the observed errors on the muscle attachment points. Related to this finding, muscle elongations can be accurately measured for both a complete humeral model and a partial humeral model. Because the presented method also showed accurate results for arthritic shoulder joints, it can be used during preoperative shoulder arthroplasty planning, in which typically only the proximal humerus is present in the scan and in which bone arthropathy can be present. As the muscle elongations are sensitive to implant positioning, surgeons can use the muscle elongation measurements to refine their surgical plan

    Automated muscle elongation measurement during reverse shoulder arthroplasty planning

    No full text
    Background: Adequate deltoid and rotator cuff elongation in reverse shoulder arthroplasty is crucial to maximize postoperative func- tional outcomes and to avoid complications. Measurements of deltoid and rotator cuff elongation during preoperative planning can sup- port surgeons in selecting a suitable implant design and position. Therefore, this study presented and evaluated a fully automated method for measuring deltoid and rotator cuff elongation. Methods: Complete scapular and humeral models were extracted from computed tomography scans of 40 subjects. First, a statistical shape model of the complete humerus was created and evaluated to identify the muscle attachment points. Next, a muscle wrapping algorithm was developed to identify the muscle paths and to compute muscle lengths and elongations after reverse shoulder arthroplasty implantation. The accuracy of the muscle attachment points and the muscle elongation measurements was evaluated for the 40 subjects by use of both complete and artificially created partial humeral models. Additionally, the muscle elongation measurements were evaluated for a set of 50 arthritic shoul- der joints. Finally, a sensitivity analysis was performed to evaluate the impact of implant positioning on deltoid and rotator cuff elongation. Results: Forthecompletehumeralmodels,allmuscleattachmentpointswereidentifiedwithamedianerror<3.5mm.Forthepartialhumeral models, the errors on the deltoid attachment point largely increased. Furthermore, all muscle elongation measurements showed an error < 1 mm for 75% of the subjects for both the complete and partial humeral models. For the arthritic shoulder joints, the errors on the muscle elongation mea- surements were <2 mm for 75% of the subjects. Finally, the sensitivity analysis showed that muscle elongations were affected by implant positioning. Discussion: This study presents an automated method for accurately measuring muscle elongations during preoperative planning of shoulder arthroplasty. The results show that the accuracy in measuring muscle elongations is higher than the accuracy in indicating the muscle attachment points. Hence, muscle elongation measurements are insensitive to the observed errors on the muscle attachment points. Related to this finding, muscle elongations can be accurately measured for both a complete humeral model and a partial humeral model. Because the presented method also showed accurate results for arthritic shoulder joints, it can be used during preoperative shoulder arthroplasty planning, in which typically only the proximal humerus is present in the scan and in which bone arthropathy can be present. As the muscle elongations are sensitive to implant positioning, surgeons can use the muscle elongation measurements to refine their surgical plan
    corecore